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2 Departamento de Fı́sica Teórica, Universidade do Estado do Rio de Janeiro, 20550-013
Rio de Janeiro, RJ, Brazil

E-mail: marcus@fsc.ufsc.br and rudnei@uerj.br

Received 30 October 2005, in final form 16 January 2006
Published 10 May 2006
Online at stacks.iop.org/JPhysA/39/6649

Abstract
We review how the phenomena of inverse symmetry breaking (and symmetry
nonrestoration) may arise in the context of relativistic as well as nonrelativistic
multi-scalar field theories. We discuss how the consideration of thermal effects
on the couplings produce different transition patterns for both theories. For
the relativistic case, these effects allow the appearance of inverse symmetry
breaking (and symmetry nonrestoration) at arbitrarily large temperatures. On
the other hand, the same phenomena are suppressed in the nonrelativistic
case, which is relevant for condensed matter physics. In this case, symmetry
nonrestoration does not happen while inverse symmetry is allowed only to be
followed by symmetry restoration characterizing a reentrant phase. The aim of
this paper is to give more insight concerning the, qualitatively correct, results
obtained by using one-loop perturbation theory in the evaluation of thermal
masses and couplings.

PACS numbers: 11.10.Wx, 98.80.Cq

1. Introduction

Inverse symmetry breaking (ISB) is the name given to the phenomenon where a given symmetry
may get broken at high temperatures. The possibility of such a phenomenon taking place in
the context of quantum field theory at finite temperature was first noted by Weinberg [1] who
also envisaged that a symmetry which is broken at zero temperature may not get restored at
all at higher temperatures, a phenomenon called symmetry nonrestoration (SNR).

The possibility that some system may acquire lower symmetries as the temperature
increases seems counter intuitive at first sight. However, there are plenty of real physical
systems which do exhibit phenomena analogous to ISB/SNR. Some examples are given by
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the Rochelle salt, liquid crystals, spin glass materials, compounds known as the manganites
(e.g., (Pr,Ca,Sr)MnO3) and many other systems and materials, as recently reviewed in [2].

The idea of ISB/SNR has also called the attention of high energy physicists due to
possibility of their implementation in realistic particle physics models, especially in the
context of high temperature phase transitions in the early universe [3, 4]. With this purpose,
ISB/SNR have been used in applications covering problems which involve CP violation and
baryogenesis, topological defect formation, inflation, etc [5].

The analysis of cosmological issues using condensed matter systems is a subject whose
importance is growing lately as shown by research programs such as the COSLAB (cosmology
in the laboratory) [6]. With this purpose we have recently analysed how ISB/SNR manifest
themselves in nonrelativistic theories which may be used in condensed matter physics [4].
Our aim was to compare the finite temperature symmetry patterns of nonrelativistic models
with the ones provided by previous studies concerning the relativistic case. As we shall review
here, these patterns turn out to be completely different when the important thermal effects
on the couplings are considered. We will review, in the following section, ISB/SNR issues
concerning the relativistic model. Then, in section 3, we will examine the nonrelativistic case
from a perturbative point of view only. This type of analysis has not been performed in detail
in [4] and will be included here since it gives new insights concerning the eventual breakdown
of perturbation theory as well as the overall qualitative behaviour of the symmetry patterns.
Our conclusions are presented in section 4.

In the companion paper [7], we review the nonperturbative results for the general
nonrelativistic model and present new results concerning an explicit application to the dilute
homogeneous binary Bose gases model (U(1) × U(1) BEC).

2. Reviewing the original relativistic model

The theory analysed by Weinberg [1] consists of a O(Nφ)×O(Nψ) invariant relativistic model
with two distinct types of scalar fields, φ and ψ , of Nφ and Nψ components, respectively. The
interactions are mediated by a quadratic cross-coupling λ as well as by self-interactions, λφ

and λψ . The Lagrangian density is given by

L = 1

2
(∂µφ)2 − m2

φ

2
φ2 − λφ

4!
(φ2)2 +

1

2
(∂µψ)2 − m2

ψ

2
ψ2 − λψ

4!
(ψ2)2 − λ

4
φ2ψ2, (1)

where φ2 = ∑Nφ

i φiφi and ψ2 = ∑Nψ

i ψiψi . Overall boundness requires the couplings to
satisfy λφ > 0, λψ > 0 and λφλψ > 9λ2. In the one-loop approximation we can readily
compute the thermal masses for φ and ψ with the results (at leading order in the high
temperature expansion, mφ/T ,mψ/T � 1) [1, 3]

M2
i (T ) � m2

i +
T 2
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1
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(
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)
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]
, where i, j = φ,ψ. (2)

This equation shows how ISB/SNR can emerge for λ < 0. For example, if one sets m2
φ and

m2
ψ positive to have a symmetric theory at T = 0, ISB takes place by choosing

|λ| >
λφ

Nψ

(
Nφ + 2

3

)
, (3)
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which makes the T 2 coefficient of M2
φ(T ) negative while the same coefficient for M2

ψ(T ) is
kept positive, due to the boundness condition. In this case, high temperatures will induce the
breaking O(Nφ) × O(Nψ) → O(Nφ − 1) × O(Nψ) at the critical temperature

T 2
c

m2
φ

= 24

[
|λ|Nψ − λφ

(
Nφ + 2

3

)]−1

. (4)

On the other hand, when m2
φ and m2

ψ are initially negative, λ < 0 and equation (3) holds
we have the emergence of SNR in the φ sector. At this point one could ask if ISB/SNR are
not just artefacts of the naive one-loop approximation. This is a rather important point since,
in principle, higher orders could bring thermal effects to the couplings in such a way so as to
suppress the phenomena. Let us consider the leading contribution to the couplings in the high
temperature approximation

λi(T ) � λi +
3

8π2
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) [
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(
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and

λ(T ) � λ +
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8π2
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)
λφ +

1

2

(
Nψ + 2

3

)
λψ + 2λ

]
, (6)

where M0 is a regularization mass scale. Then, the thermal masses can be rewritten as
M2

i (T ) = m2
i + (T 2/12)�i(T ), where �i(T ) = λi(T )(Ni + 2)/6 + λ(T )Nj/2.

It turns out that these improved results for M2
i (T ) also allow for the appearance of

ISB/SNR [3, 8]. However, at this point one could raise an objection following the fact that
those results are still perturbative and, as well known, perturbation theory eventually breaks
down for field theories at finite temperatures. However, nonperturbative evaluations carried
out with the Wilson renormalization group equations [8] as well as with the linear δ expansion
[3] show the correctness of those results in the qualitative sense. Reference [9] also supports
the occurrence of those exotic phenomena. That is, the inclusion of thermal effects on the
couplings does not exclude the possibility of SNR/ISB occurring, at high temperatures, in
O(Nφ) × O(Nψ) scalar relativistic models.

3. The nonrelativistic model and the appearance of reentrant phases

We now turn our attention to the analysis of SNR/ISB phenomena in the nonrelativistic
limit. Let us first recall some fundamental differences between relativistic and nonrelativistic
theories that will be important in our analysis. Firstly, the obvious reduction from Lorentz
to Galilean invariance. Secondly, it should be noted that in the nonrelativistic description
particle number is conserved and so, only complex fields are allowed. This second point
will be particularly important to us since, for the processes entering the evaluation of the
effective couplings only those that do not change particle number (the elastic processes) will
be allowed. Another important difference between relativistic and nonrelativistic models
concerns the structure of the respective propagators. While the relativistic propagator allows
for both forward and backward particle propagation (which is associated with particles and
anti-particles, respectively), the nonrelativistic propagator of scalar theories at T = 0 only
allows for forward propagation. Note, however, that the structure of the propagators in
a thermal bath includes both backward and forward propagation [10]. The nonrelativistic
Lagrangian density is given by [4]

L = �∗
(

i∂t +
1

2m�

∇2

)
� − κ��∗� − g�

3!
(�∗�)2 + 
∗

(
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2m


∇2

)



− κ

∗
 − g


3!
(
∗
)2 − g(�∗�)(
∗
). (7)
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The one-body parameters κi , with i = �,
, can account for external potentials, or chemical
potentials (in the grand canonical formalism) which is important for the Bose–Einstein
condensation (BEC). The mi represents the (atomic) masses. For the BEC case, the couplings
are related to the s-wave scattering length. Here, we will not attach any specific role to any
of those parameters, leaving this to the companion paper [7]. The numerical factors and
signs in the one- and two-body potential terms have been chosen in such a way so that the
potential is analogous the one considered in (1). The boundness condition for the model (7)
is analogous to that of the relativistic model (1), requiring g
 > 0, g� > 0 and g
g� > 9g2.
In addition, note that for the nonrelativistic limit to be valid, one must keep T � mi . In
general, for nonrelativistic systems, the masses mi are of order of typical atomic masses,
mi ∼ O(1 − 100) GeV. At the same time, the typical temperatures in condensed matter
systems are at most of order of a few eV. Therefore, this condition will always hold for the
ranges of temperature we will be interested in below.

For multi-component fields, (7) is a nonrelativistic multi-scalar model with symmetry
U(N�) × U(N
) that is the analogue of the original relativistic model (1). For simplicity, in
the following we set N� = N
 = 1, corresponding to an U(1) × U(1) symmetric model. In
this case, one can write the complex fields in terms of real components as � = (1/

√
2)(φ1+iφ2)

and 
 = (1/
√

2)(ψ1 + iψ2).
The nonrelativistic model, equation (7), falls in the same class of universality as the

O(2) × O(2) relativistic case. At the one-loop level, one can then write κi in the high
temperature approximation as

κi(T ) � κi +

(
T

2π

)3/2

ζ(3/2)�NR
i , (8)

defining the quantity �NR
i = (2/3)gim

3/2
i + gm

3/2
j .

Then, the critical temperature for symmetry restoration/breaking is

T NR
c,i = 2π

[ −κi

�NR
i ζ(3/2)

]2/3

. (9)

As in the relativistic case, the exotic transition patterns arise for g < 0. For example, �NR

signals the appearance of ISB or SNR in the 
 sector if one chooses |g| > (2/3)g
 . We have
seen that in the relativistic case this possibility survives to the inclusion of thermal effects
on the couplings. However, as already discussed, the nonrelativistic contributions which are
allowed in the computation of the four-point Green’s functions may produce gi(T ) and g(T )

which differ drastically from the relativistic λi(T ) and λ(T ). In fact, the one-loop evaluation,
for high-T, gives [4]

gi(T ) � gi − mT

12π

√
2m

κ

(
5g2

i + 9g2
)

+ O(κ/T ), (10)

and

g(T ) � g − mT

4π

√
2m

κ
g

(
g +

2g�

3
+

2g


3

)
+ O(κ/T ), (11)

where we have set m� = m
 = m and κ� = κ
 = κ . Note from the equations above
that the effective couplings in the nonrelativistic theory have a much stronger dependence
with the temperature than those in the equivalent relativistic theory. We therefore expect to
see larger deviations at high temperatures for the effective couplings as compared with the
same case in the relativistic problem (by high temperature we mean ki(0) � T � mi).
It is also evident from the analysis of higher loop corrections to the effective couplings in
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Figure 1. The quantity κ�(T ) obtained by using bare couplings (dashed line) as well as temperature
dependent couplings (continuous line). Both, κ�(T ) and T are given in eV unities.
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Figure 2. The quantity κ
(T ) obtained by using bare couplings (dashed line) as well as
temperature-dependent couplings (continuous line). In the second case, one observes ISB followed
by SR characterizing a reentrant phase. Both κ
(T ) and T are given in eV unities.

the nonrelativistic model that all bubble-like corrections contribute with the same power in
temperature as the one-loop terms, which can easily be checked by simple power counting in
the momentum. A side effect of this is the breakdown, at high temperatures, of the simple
one-loop perturbation theory applied here. Another symptom is the apparent running of the
effective self-couplings, shown above, to negative values for sufficiently high temperatures
given by T neg ∼ min

(
12π

√
κ/(2m3)g�

/(
5g2

� + 9g2
)
, 12π

√
κ/(2m3)g


/(
5g2


 + 9g2
))

. At
the same time, perturbation theory breaks down when the temperature-dependent boundness
condition, RNR(T ) = g
(T )g�(T )/[3g(T )]2, becomes smaller than the unity. Nevertheless,
it is easy to check that (for the parameters adopted below) the results obtained by just
plugging equations (10) and (11) above into (8) already shows a drastic qualitative difference
between this simple improved approximation and the naive perturbative evaluation given by
equation (8). This can be seen from figures 1 and 2 where κ�(T ) and κ
(T ) are displayed
using temperature-dependent and temperature-independent couplings.

The parameter values are g�(0) = 8 × 10−16 eV−2, g
(0) = 7 × 10−17 eV−2, g(0) =
−5.5 × 10−17 eV−2,m� = m
 = 1 GeV and κ
(0) = κ�(0) = 1 neV. Using these
values and equations (10) and (11) in the evaluation of �NR one sees the appearance of a
reentrant phase on the φ sector characterized by ISB (at T ISB

c � 1 × 10−3 eV) followed by SR
(at T SR

c � 4 × 10−3 eV). To assess the validity of perturbation theory one must be sure that
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Figure 3. The dimensionless quantity RNR(T ) = g
(T )g�(T )/[3g(T )]2 as a function of T (eV).
One sees that RNR(T ) � 1 at T unbound � 4.675 × 10−3 eV.

those values of T ISB
c and T SR

c are smaller than the temperature which signals that the potential
becomes unbounded via g
(T ) < 0, g�(T ) < 0 or RNR(T ) < 1. For the parameter values
considered here, g
(T ) reaches negatives values, before g�(T ), at T neg � 6.6 × 10−3 eV.
At the same time, figure 3 shows that RNR(T ) � 1 at a smaller temperature, namely
T unbound � 4.675 × 10−3 eV. Therefore, the appearance of the important reentrant phase, in
the ψ sector, happens at critical temperatures smaller than the ones which cause the instability
of the potential. So, at least qualitatively, the strictly perturbative result presented in this paper
is already rather satisfactory and has been confirmed by a nonperturbative resummation [4].

The results presented here show that the phenomenon of reentrant phases, like those of
ISB/SNR, observed in the relativistic models are not exclusively nonperturbative phenomena,
but also feasible within perturbation theory. Furthermore, reentrant phases in nonrelativistic
models like (7) can be seen as a consequence of the interplay of the different energy scales
available, that can be expressed in terms of κi,mi and the (dimensionfull) couplings, g and
gi . At the same time, the relativistic model characterized only by the scales mi , symmetry
breaking/restoration phenomena is only accessible at high energy scales, T � mi , as clearly
shown by the general critical temperature result, equation (4), for perturbative values of
coupling constants. The fact that the emergence of reentrant phases is a genuine feature of
nonrelativistic models which is not affected by relativistic corrections can be seen, for instance,
by considering the expansion of the relativistic dispersion relation

ωi = (
k2 + m2

i

)1/2 ∼ m +
k2

2mi

− 1

2mi

(
k2

2mi

)2

+ · · · . (12)

Since the temperature roughly gives the magnitude of the kinetic energy, the third term
in (12) relative to the second one is of order O(T /mi) � 1. Higher order corrections to the
nonrelativistic term are, therefore, negligible for the results obtained, e.g. for the reentrant
phase temperatures, T ISB and T SR, shown for instance in figure 2.

4. Conclusions

We have seen how symmetry nonrestoration and inverse symmetry breaking may take place,
at arbitrarily large temperatures, in multi-field scalar relativistic and nonrelativistic theories.
These counter intuitive phenomena appear due to the fact that the crossed interaction can
be negative while the models are still bounded from below. We have reviewed that, in the
relativistic case, ISB/SNR survive the inclusion of thermal effects on the couplings. This
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qualitative result, first obtained perturbatively is confirmed by nonperturbative evaluations
[3, 4, 8, 9]. Then, we have analysed the possibility of obtaining such transition patterns in
the nonrelativistic case. The naive use of temperature-independent couplings allows ISB (and
SNR), but the inclusion of the leading thermal contribution already causes a drastic difference.
Namely, ISB can show up in the nonrelativistic case only via the appearance of reentrant
phases, as indeed observed in many real condensed matter systems. In the present work,
our aim was to perform a deeper investigation of the perturbative results than the one which
was done in [4]. We have shown that perturbation theory is capable of predicting the right
transition behaviour provided one stays within its limit of applicability. Indeed, when thermal
corrections are included, the qualitative results obtained here are verified by nonperturbative
calculations as we review in [7] where the Bose–Einstein condensation problem for binary
gases is considered.
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Bimonte G, Iñiguez D, Tarancón A and Ullod C L 1993 Nucl. Phys. B 559 103
[10] Mahan G D 1981 Many-particle Physics (New York: Plenum)

http://dx.doi.org/10.1103/PhysRevD.9.3357
http://www.arxiv.org/abs/cond-mat$/$0502033
http://dx.doi.org/10.1103/PhysRevD.61.125016
http://dx.doi.org/10.1103/PhysRevD.71.123519
http://dx.doi.org/10.1103/PhysRevLett.42.1651
http://dx.doi.org/10.1103/PhysRevLett.64.340
http://dx.doi.org/10.1016/S0920-5632(96)00572-5
http://www.arxiv.org/abs/cond-mat$/$
http://www.arxiv.org/abs/0412404
http://dx.doi.org/10.1103/PhysRevD.54.2944
http://dx.doi.org/10.1016/S0370-2693(98)00775-8
http://dx.doi.org/10.1016/S0550-3213(99)00421-6

	1. Introduction
	2. Reviewing the original relativistic model
	3. The nonrelativistic model and the appearance of reentrant phases
	4. Conclusions
	Acknowledgments
	References

